Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Org Lett ; 25(36): 6623-6627, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37669620

RESUMO

A highly diastereoselective P-Michael addition of chiral aminophosphinic acids to achiral acrylates has been developed, leading to phosphinic dipeptide isosteres in high yields and dr of up to >50:1. The method allows for the diastereoselective preparation of target compounds without the need for chiral auxiliaries or P-chiral substrates. A possible mechanistic explanation involves a domino chirality transfer from the aminophosphinic acid to the P center, amplified by a crucial benzhydryl ester group, and then to the α-carbon.

2.
Molecules ; 27(4)2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35209031

RESUMO

In this report, a synthetic protocol for the preparation of phosphinic dipeptides of type 5 is presented. These compounds serve as valuable building blocks for the development of highly potent phosphinopeptidic inhibitors of medicinally relevant Zn-metalloproteases and aspartyl proteases. The proposed method is based on the tandem esterification of α-aminophosphinic and acrylic acids under silylating conditions in order to subsequently participate in a P-Michael reaction. The scope of the transformation was investigated by using a diverse set of readily available acrylic acids and (R)-α-aminophosphinic acids, and high yields were achieved in all cases. In most examples reported herein, the isolation of biologically relevant (R,S)-diastereoisomers became possible by simple crystallization from the crude products, thus enhancing the operational simplicity of the proposed method. Finally, functional groups corresponding to acidic or basic natural amino acids are also compatible with the reaction conditions. Based on the above, we expect that the practicality of the proposed protocol will facilitate the discovery of pharmacologically useful bioactive phosphinic peptides.


Assuntos
Acrilatos/química , Dipeptídeos , Ácidos Fosfínicos/química , Dipeptídeos/síntese química , Dipeptídeos/química , Esterificação
3.
Front Pharmacol ; 11: 585838, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33071797

RESUMO

Insulin-Regulated Aminopeptidase (IRAP, EC 3.4.11.3) is a multi-tasking member of the M1 family of zinc aminopeptidases. Among its diverse biological functions, IRAP is a regulator of oxytocin levels during late stages of pregnancy, it affects cellular glucose uptake by trafficking of the glucose transporter type 4 and it mediates antigen cross-presentation by dendritic cells. Accumulating evidence show that pharmacological inhibition of IRAP may hold promise as a valid approach for the treatment of several pathological states such as memory disorders, neurodegenerative diseases, etc. Aiming to the investigation of physiological roles of IRAP and therapeutic potential of its regulation, intense research efforts have been dedicated to the discovery of small-molecule inhibitors. Moreover, reliable structure-activity relationships have been largely facilitated by recent crystal structures of IRAP and detailed computational studies. This review aims to summarize efforts of medicinal chemists toward the design and development of IRAP inhibitors, with special emphasis to factors affecting inhibitor selectivity.

4.
J Biol Chem ; 295(21): 7193-7210, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32184355

RESUMO

Endoplasmic reticulum aminopeptidase 1 (ERAP1) trims antigenic peptide precursors to generate mature antigenic peptides for presentation by major histocompatibility complex class I (MHCI) molecules and regulates adaptive immune responses. ERAP1 has been proposed to trim peptide precursors both in solution and in preformed MHCI-peptide complexes, but which mode is more relevant to its biological function remains controversial. Here, we compared ERAP1-mediated trimming of antigenic peptide precursors in solution or when bound to three MHCI alleles, HLA-B*58, HLA-B*08, and HLA-A*02. For all MHCI-peptide combinations, peptide binding onto MHCI protected against ERAP1-mediated trimming. In only a single MHCI-peptide combination, trimming of an HLA-B*08-bound 12-mer progressed at a considerable rate, albeit still slower than in solution. Results from thermodynamic, kinetic, and computational analyses suggested that this 12-mer is highly labile and that apparent on-MHC trimming rates are always slower than that of MHCI-peptide dissociation. Both ERAP2 and leucine aminopeptidase, an enzyme unrelated to antigen processing, could trim this labile peptide from preformed MHCI complexes as efficiently as ERAP1. A pseudopeptide analogue with high affinity for both HLA-B*08 and the ERAP1 active site could not promote the formation of a ternary ERAP1/MHCI/peptide complex. Similarly, no interactions between ERAP1 and purified peptide-loading complex were detected in the absence or presence of a pseudopeptide trap. We conclude that MHCI binding protects peptides from ERAP1 degradation and that trimming in solution along with the dynamic nature of peptide binding to MHCI are sufficient to explain ERAP1 processing of antigenic peptide precursors.


Assuntos
Aminopeptidases/química , Antígeno HLA-A2/química , Antígenos HLA-B/química , Antígenos de Histocompatibilidade Menor/química , Oligopeptídeos/química , Aminopeptidases/genética , Domínio Catalítico , Antígeno HLA-A2/genética , Antígenos HLA-B/genética , Humanos , Antígenos de Histocompatibilidade Menor/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...